

Effectiveness and Cost-effectiveness of HIV Screening Strategies Across Europe

Guillaume Mabileau^{1,2}, Julia Del Amo^{3,4}, Kristi Rüütel⁵, A David Paltiel⁶, Liis Lemsalu⁵, Asunción Díaz³, Jesús Martín Fernández^{7,8}, Rochelle P Walensky^{9,10,11,12}, Kenneth A Freedberg^{9,10,11,12,13}, Yazdan Yazdanpanah^{1,2,12} for OptTEST by HiE

1 Inserm, UMR 1137, IAME, Paris, France; 2 Université Paris-Diderot, Paris, France; 3 National Center for Epidemiology, Institute of Health Development, Tallinn, Estonia; 6 Yale School of Public Health, New Haven, CT, USA; 7 Primary Care. National Health System, Madrid. Spain; 8 Rey Juan Carlos University, Madrid. Spain; 9 Medical Practice Evaluation Center, Massachusetts General Hospital, Boston, MA, USA; 10 Divisions of General Internal Medicine and 11 Infectious Diseases; Massachusetts General Hospital, Boston, MA, USA; 12 Harvard Medical School of Public Health, Boston, MA, USA; 12 AP-HP, Bichat-Claude Bernard Hospital, Infectious Diseases Department, Paris, France

Abstract (modified)

OBJECTIVE

In the eras of both Treatment as Prevention and PrEP, HIV testing has become critical to control the epidemic. We evaluated the clinical impact, costs, and cost-effectiveness of different testing strategies for both high-risk individuals and the general population in three European countries with different epidemic profiles.

METHOD

We used a mathematical model of HIV disease, the Cost-Effectiveness of Preventing AIDS Complications (or "CEPAC") Model, with country-specific clinical & economic data to project discounted life expectancy, cost and incremental cost-effectiveness ratios (ICERs) of alternative HIV screening strategies in Estonia, France, and Spain. We compared these strategies to current HIV testing practices in adults aged 18-69 among MSM, PWID, and the overall population. Input data by country included: HIV prevalence, incidence, mean CD4 at ART initiation, current screening performance including acceptance and linkage-to-care rates; and costs for ART, HIV tests, and HIV care (Table 1). We considered a strategy "cost-effective" if its ICER in 2015€ per year of life saved (YLS) was less than the annual per capita GDP of the country.

RESULTS

Frequent HIV testing among high-risk groups increased life expectancy in people living with HIV (Table 2). Among MSM, one test every 12 months in Estonia and France, and every 3 years in Spain, had an ICER of 16,200; 18,600; and 25,300€/YLS. Among PWID, testing every three months in Estonia, every 3 years in France, and every 6 months in Spain had ICERs of 7,000; 19,700; and 18,300€/YLS, respectively. In the general population, one additional lifetime test in France and Spain, and testing every 3 years in Estonia, had ICERs of 37,100; 28,100; and 13,000€/YLS (Figure 1). Our findings were most sensitive to uncertainty in rates of HIV incidence, the current CD4 at diagnosis, and HIV test costs.

CONCLUSIONS

In France and Estonia, MSM should have additional HIV testing every 12 months; and in Spain every 36 months. In Spain and France, PWID should be tested every 6 and 36 months, while in Estonia, the frequency could be even higher. HIV testing in the general population is also cost-effective in these countries. For optimal value, HIV screening strategies in Europe should be tailored to each country's epidemic.

Table 1: Base case key-input parameters for analyses in Estonia, France, and Spain

Table 1. Base case key-input parameters for analyses in Estonia, France, and Spain									
Parameter	Estonia	France	Spain						
Undiagnosed prevalence (%)									
Overall Population	0.40	0.07	0.10						
MSM	2.00	2.95	0.62-1.24						
PWID	6.00	0.62	3.31-6.62						
Incidence /100PY									
Overall Population	0.033	0.017	0.007						
MSM	0.08	1.00	0.28-1.00						
PWID	6.00	0.13	1.90-3.00						
Mean CD4 count at initiation									
Overall Population		419	414						
MSM	289	465	450						
PWID		316	275						
Screening characteristics									
Test acceptance rate	95.0%	79.0%	96.0%						
Linkage to care rate	50.0%	75.0%	83.1%						
Cost of HIV test	€ 8.00	€ 41.77	€ 18.45						
Cost of ART (annually)									
1st line	€2,920	€11,810	€8,640						
2nd to 4th line	€4,750	€13,960	€10,210						
5th line	€7,720	€19,740	€14,450						
GDP per capita	€ 20,000	€ 29,000	€ 24,300						

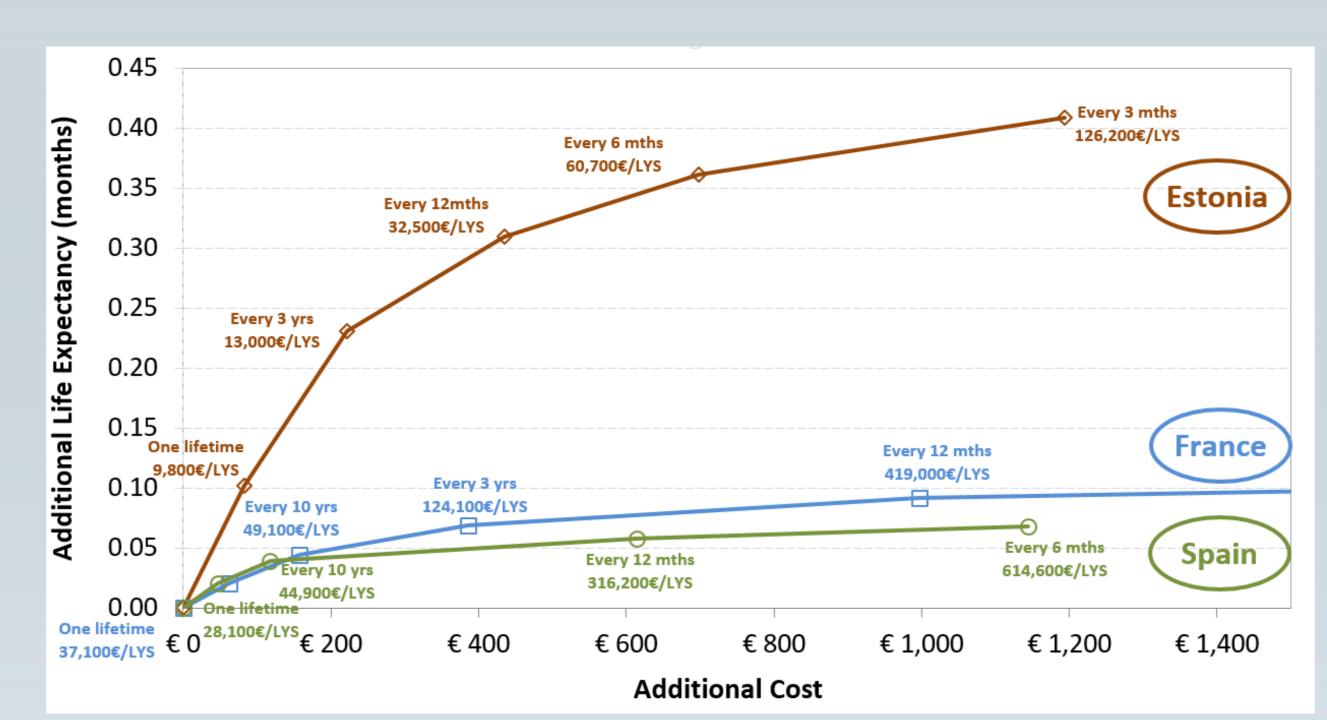


Figure 1: Overall population - Efficiency frontiers (Additional Cost vs. Efficacy)

- More frequent HIV testing consistently produced increases in life expectancy and cost in overall populations in Estonia, France, and Spain
- The life expectancy benefits of more frequent testing were greatest in Estonia.

Table 2: High-risk groups - Results of different HIV testing strategies in Estonia, France, and Spain for MSM and PWID

Testing strategies:1	Estonia GDP=€20,000			France GDP=€29,000		Spain GDP=€24,300			
	LE ³	Costs (€)	ICER (€/YLS) ²	LE ³	Costs (€)	ICER (€/YLS) ²	LE ³	Costs (€)	ICER (€/YLS) ²
MSM									
Current frequency	359.7	€ 1,736		280.9	€ 45,276		332.2	€ 12,640	
Every 10 years	360.2	€ 2,110	dominated	281.8	€ 46,390	15,100	332.7	€ 13,233	13,70
Every 3 years	360.4	€ 2,277	7,800	282.2	€ 47,011	dominated	332.9	€ 13,595	25,30
Every 12 months	360.6	€ 2,589	16,200	282.9	€ 48,135	18,600	333.2	€ 14,218	31,20
Every 6 months	360.8	€ 2,918	30,000	283.4	€ 49,366	28,700	333.4	€ 14,899	32,50
Every 3 months	360.9	€ 3,458	49,700	283.9	€ 51,014	38,900	333.5	€ 15,940	133,60
PWID									
Current frequency	267.5	€ 36,010		332.9	€ 6,761		320.4	€ 36,163	
Every 10 years	273.4	€ 39,795	dominated	333.4	€ 7,640	dominated	325.7	€ 43,875	dominate
Every 3 years	279.5	€ 42,748	dominated	333.7	€ 8,133	19,700	327.8	€ 46,129	dominate
Every 12 months	286.4	€ 46,384	dominated	334.1	€ 9,035	30,900	329.4	€ 48,111	16,00
Every 6 months	289.7	€ 48,054	6,500	334.2	€ 10,070	94,400	330.2	€ 49,299	18,30
Every 3 months	292.3	€ 49,536	7,000	334.4	€ 12,002	177,400	330.5	€ 50,530	47,90

Year of Life Saved. 2 ICER = Incremental Cost-Effectiveness Ratio in Euros per year of life saved (YLS): calculated from the 3% discounted outcomes in the total cohort (i.e. HIV- and HIV+) in Estonia and Spain (in France we used a 4% discount rate); the comparator strategy is always the next lowest, non-dominated, alternative. 3 Discounted Life Expectancy in months for the total cohort (i.e. HIV- and HIV+)

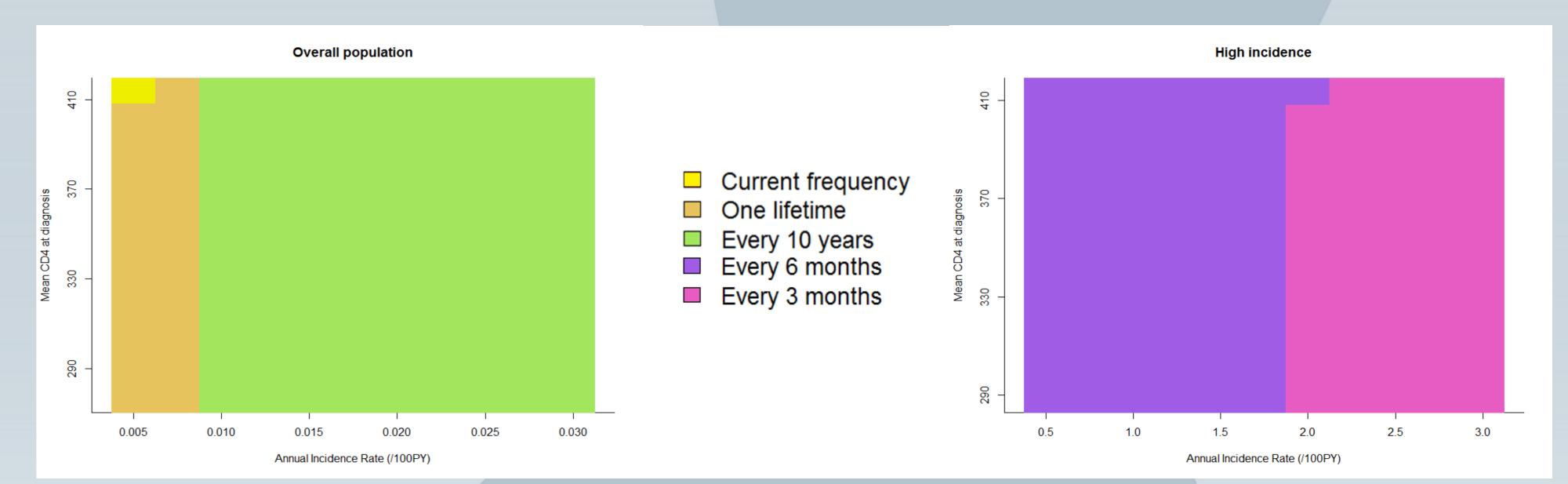


Figure 2: Two-way sensitivity analyses varying the HIV incidence rate and the mean CD4 at diagnosis. Each area presents the most cost-effective testing frequency for a GDP willingness to pay threshold of €30,000

- For the overall population, one additional lifetime test was cost-effective for incidence below 0.009/100PY; above that, an additional test every 10 years was cost-effective.
- For high incidence groups, an additional test every 6 months was cost-effective for an incidence below 1.9/100PY; above that rate, every 3 month testing became cost-effective.

